Quantum Computing: State of Play

Justin Dressel, Ph.D.
Institute for Quantum Studies, Chapman University

OC ACM Chapter Meeting, May 16th, 2018
Quantum Computing: Media Hype
What is a "Quantum" Computer?

IBM, Superconducting quantum computer
Main Idea: Computation is Physics

- Traditional computation uses classical physics
 - *Turing Machines*: data tape and a moving read/write head for *bits*

- The physical world is better described by quantum physics
 - *Atoms, Molecules*: do not generally behave like Turing Machines

- Does quantum physics change the possibilities of computation?
 - Yes. The theory of computation must be extended

Anything "Turing Complete" can simulate a Turing Machine, and thus all classical computation.

Even Microsoft Excel or Minecraft
Classical Physics & Bits

- **Classical Bits**
 - *Electrical signals*: bits are high/low voltages on metallic wires

 ![Diagram showing electrical signals](image)

 - *Magnetic domains*: bits are spin configurations in arrays of atoms

 ![Magnetic domains images](image)

Bits are **definite** physical configurations (0 or 1)
Quantum Physics and Qubits

New "coherent" features for quantum bits (qubits)

- **Superpositions** of 0 and 1 can also be *definite*

 A bit has two possible definite states.

 A qubit has a definite state for each point on the surface of a unit sphere.

- **Entanglement** breaks modularity: *More is different*

 1 qubit requires 2 continuous angles to cover its spherical state space

 N qubits require 2^N continuous angles to cover their state space (not $2N$)

 Exponential scaling of parameters with qubit number, not linear!

- **Time-symmetry**: logic gates must be *reversible*

 Qubit states follow *smooth continuous orbits* on the unit sphere

- **Measurement** forces *probabilistic* description

 When measured, qubit *randomly* collapses to 0 or 1 based on state proximity

These coherent features wash out (or "decohere") on the macro-scale to produce the classical picture.
Probabilistic Bits vs. Quantum Bits

Classical Bit

- Only 2 definite states: 0 or 1
- z-axis connecting them is indefinite, or probabilistic

```
1 (z = 1)
```

```
0 (z = -1)
```

- Probabilistic state: 1 parameter
 \[z = P(1) - P(0) \in [-1, 1], \quad (P(1) + P(0) = 1) \]
- Evolution can only flip: \(0 \leftrightarrow 1, \quad (z \rightarrow -z) \)
- Measurement obeys Bayes' rule:
 \[P(1|r) = \frac{P(r|1)P(1)}{P(r|1)P(1)+P(r|0)P(0)} \]

Quantum Bit

- Shares same "z-axis"
- Decoheres as projection to indefinite classical state on z-axis

```
|1\rangle (z = 1)
```

```
|0\rangle (z = -1)
```

- Surface of sphere are definite states
- Inside sphere are indefinite states

```
|+\rangle (x = 1)
```

```
|--\rangle (x = -1)
```

```
|--i\rangle (y = -1)
```

- Probabilistic state: 3 parameters
 \[\rho = (x, y, z) \in [-1, 1]^3, \quad (x^2 + y^2 + z^2 \leq 1) \]
 \[x + iy = e^{-i(\phi+d)/2} \sqrt{\frac{P(1)}{2} \frac{P(0)}{2}} \]
- Evolution precesses in circle:
 \[\partial_t \rho = \vec{\Omega} \times \rho \]
- Measurement obeys Bayes' rule
Gate-based Quantum Computation

Idea: Treat quantum logic as superset of reversible logic

- Use *reversible classical computation* as a starting point.
 Quantum computation should "decohere" to this classical model.
 - Usual AND, OR, NAND gates are not reversible.
 - Reversible logic gates: **NOT, CNOT, Toffoli**

\[
\begin{align*}
 x &\mapsto 1 \oplus x \\
 (x, y) &\mapsto (x, x \oplus y) \\
 (x, y, z) &\mapsto (x, y, x y \oplus z)
\end{align*}
\]

- Upgrade the bits in these gates to **qubits**
Gate-based Quantum Computation

3 new features in quantum generalization

1. *Parallelism* of gates over superpositions of qubit states

\[|\psi\rangle \xrightarrow{\bigoplus} \hat{X} |\psi\rangle \]

\[|\psi\rangle = \alpha |0\rangle + \beta |1\rangle \quad \leftrightarrow \quad \hat{X} |\psi\rangle = \alpha |1\rangle + \beta |0\rangle \]

2. *Random* classical bits obtained when measuring qubits

\[|\psi\rangle = \alpha |0\rangle + \beta |1\rangle \Rightarrow \begin{cases} 0, & P(0) = |\alpha|^2 \\ 1, & P(1) = |\beta|^2 \end{cases} \]

3. *New gates* to produce superpositions from classical bit states

\[|\psi\rangle \xrightarrow{\text{Hadamard}} \hat{H} |\psi\rangle \]

\[|\psi\rangle = |1\rangle \quad \leftrightarrow \quad \hat{H} |\psi\rangle = \frac{1}{\sqrt{2}} |0\rangle - \frac{1}{\sqrt{2}} |1\rangle \]

Negatives in the "probability amplitudes" for the superpositions allow for "destructive interference" since they can cancel positives.
Is a quantum computer more powerful?

- The answer to this is *unknown*. However there are *strong indications it is*.

- Rough logic of why it *likely* to be more powerful:
 - *(+)* **Parallelization** of computations over superpositions
 - This parallelization can *exponentially speed up* a single computation
 - *(−)* **Randomness** of measurement kills the parallelization speedup
 - Computations generally are *exponentially repeated* due to uncertainty
 - *(+)* **Destructive interference** can eliminate most uncertainty
 - Prior to measurement, *interference can reduce most outcomes to zero probability*, leaving only a few information-dense possibilities
 - This can at least partially restore the speedup expected from parallelism
Example: Quantum (Fast) Fourier Transform

Suppose a periodic sequence can be encoded as the amplitudes of a superposition.
The quantum Fourier transform (QFT) finds periodicity in polynomial operations.

steps per n bits: \(2^n(2^{n+1} - 1)\) (DFT) \(\rightarrow\) \(3n2^n\) (FFT) \(\rightarrow\) \((n^2 + n)/2\) (QFT)

\[
|\psi\rangle = |000\rangle + i|001\rangle - |010\rangle - i|011\rangle + |100\rangle + i|101\rangle - |110\rangle - i|111\rangle
\]

\[\Rightarrow \hat{F}|\psi\rangle = |010\rangle\]

Detects that each successive phase factor is: \((e^{2\pi i/8})^2\)

Caveat: Answer stored as superposition. Must randomly sample outputs to measure.
Example: Shor's Algorithm

To factorize an n-bit integer, reduce the problem to a period-finding problem, then apply the quantum Fourier transform to exponentially speed it up. Since the resulting superpositions are periodic by construction, the main caveat of the QFT is mitigated.

\[O(e^{1.7 \log n^{1/3} \log \log n^{2/3}}) \] (number sieve) \[\longrightarrow \] \[O((\log n)^2 \log \log n \log \log \log n) \] (Shor)

Useful for breaking encryption!

Public key encryption (RSA) relies on the factoring of integers to be difficult.
How close are we to practical quantum computers?

We already have them! ... sort of

2 main competing implementations (others in development):

1. Trapped ions
 UMD : 53 qubits

2. Superconducting circuits
 Google : 72 qubits
 IBM : 50 qubits
 Rigetti Computing : 19 qubits
 UC Berkeley : 10 qubits

But these numbers do not tell the complete story
A trapped ion qubit is a superposition of the lowest two magnetic hyperfine energy levels of an ion (like Ytterbium or Calcium).

Such ions are trapped and cooled with lasers, then manipulated with more lasers.
A superconducting (transmon) qubit is a superposition of the lowest two energy levels of a charge oscillation (an "artificial atom") across a nonlinear inductive tunnel barrier attached to a capacitive antenna.

Controlled with all electrical AC signals at microwave frequencies

Cooled to mK temperatures

UC Berkeley: 8 qubit chip

Yale: Transmon SEM

$T_1 = 9 \mu$s

$T_2' = 7 \mu$s
MIGHTY ATOMS
A programmable quantum computer based on five atomic qubits

WE HAVE THE TECHNOLOGY
Bionic athletes prepare for Syborg Olympics in Zurich
PAGE 27

OFFSHORE POLLUTION
A global solution to the flood of toxic waste
PAGE 29

MINING TROUBLE
Joseph Stiglitz on that conflicted currency, the euro
PAGE 31

HARRISBURG, PENNSYLVANIA
53 Trapped Fluorescing Ions, UMD
Government Labs
(MIT Lincoln Labs, Sandia National Labs, Laboratory for the Physical Sciences, NIST)

Levitating trapped ions as qubits

YouTube video of Trapped Ion Design Concept
Rigetti Computing

Rigetti 19Q Processor
19 qubits
How Many Qubits is "Enough"?

- Suppose our goal is to implement Shor's Algorithm to factor an n-bit integer. For example, strong RSA encryption uses 2048-bit keys.
 - Need: 2n qubits minimum to implement algorithm
 - RSA needs 4096 qubits - about 2 orders of magnitude more than state-of-the-art quantum computing hardware (a few years away)
 - Caveat: qubits need to be perfect - no laboratory qubit is perfect

- Hidden resource cost: Quantum Error Correction
 - Quantum coherence is very sensitive
 - To protect against decoherence, need to encode quantum information redundantly

- Idea: compose "Logical" qubits out of many "Physical" qubits
Classical Bit Error Correction

0 \mapsto 000 \hspace{1cm} 1 \mapsto 111

If one bit flips, can detect and correct via majority-voting

Qubit Error Correction

$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle \mapsto \alpha|000\rangle + \beta|111\rangle$

Same basic idea, but now applied to superpositions

Main problem: cannot "look" at the bits directly due to measurement collapse

Resolution: measure parities of bits instead
Qubit Error Correction

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle \mapsto \alpha|000\rangle + \beta|111\rangle$$

Simple bitflip protection is not quite enough.

Problem: qubits can do more than just flip - more can go wrong

Resolution: redundantly encode several types of information at once (e.g., multiple axes of the sphere), and measure several types of parities to fully detect and correct errors

Remarkably, protecting two independent types of error is sufficient to protect against all errors
The "Surface Code"

A very clever way to implement full quantum error correction for a 2D lattice of nearest-neighbor-coupled qubits is the "surface code"

Idea: Create **three** interspersed lattices

1. **Data qubit lattice** - white dots (stores quantum info.)
2. **X qubit lattice** - black dots, yellow (measures XXXX parities)
3. **Z qubit lattice** - black dots, green (measures ZZZZ parities)

Can **encode** redundant information across entire **area of the lattice** to reduce error rate for the resulting logical qubit

"Surface Code" Logical Qubit

Shor’s Algorithm needs a logical error rate of around $1e-20$ per step.

If each step has an error rate $\sim 1e-3$ (typical in very good hardware), then about $1e4$ physical qubits will be needed to encode each logical qubit!
Updated Estimate for Shor's Algorithm

• $n = 2048$ bits for secure RSA encryption
• Need a minimum of $2n$ logical qubits for n bits
• Need $1e4$ physical qubits per logical qubit
• Need another factor of 15 overhead for algorithmic details (state purification)

Minimum qubit number : 10^9

• Adding in the time-axis:
 - Algorithm requires $3e11$ Toffoli gates
 - For superconducting qubits ~ 100ns per Toffoli gate

Factoring run-time : 27 hr

Side note : Can reduce run-time by adding more qubits

(Compare to 6.4 quadrillion years for a classical desktop computer running the number sieve)

Growth in qubit number is currently **exponential**

If growth continues exponentially (with both fidelity and technical substrate scaling favorably) then we can expect chips with one billion qubits in:

~10-15 years
What can we do until then?

We are now reaching the scale that is no longer possible to simulate using classical supercomputers.

The current challenge is to find "near-term" applications for the existing quantum devices.
Quantum Simulation

Idea: Quantum systems more easily simulate other quantum systems
(Proposed by Feynman in 1985)

Quantum Chemistry is an obvious application

Recent algorithms need only
~1e2 physical qubits for approximate solutions, or
~1e2 logical qubits for exact solutions
Experimental Progress already Underway

Two quantum algorithms for computing the bond energy for an H2 molecule using 3 qubits, compared to the numerical calculation using a classical computer.

Experimental data already viable

For larger molecules, classical computers will no longer be able to numerically calculate these energies.
Program a Quantum Computer Now

IBM Quantum Experience: Cloud Computer

(16 qubits free, 20+ paid)
Quantum Software Stacks

Microsoft: Q#, Quantum Dev Kit, LiQui|

IBM: QISKit SDK

```
operation Teleport(msg : Qubit, there : Qubit) :
    body {
        using (register = Qubit[1]) {
            let here = register[0];
            H(here);
            CNOT(here, there);
            CNOT(msg, here);
            H(msg);
            // Measure out the entanglement.
            if (M(msg) == One) { Z(there); }
            if (M(here) == One) { X(there); }
        }
    }

from qiskit import ClassicalRegister, QuantumRegister
from qiskit import QuantumCircuit, execute
from qiskit.tools.visualization import plot_histogram

# set up registers and program
qr = QuantumRegister(16)
cr = ClassicalRegister(16)
qc = QuantumCircuit(qr, cr)

# rightmost eight (qu)bits have ')' = 00101001
qc.x(qr[0])
qc.x(qr[3])
qc.x(qr[5])

# second eight (qu)bits have superposition of
# '8' = 00111000
# ';' = 00111011
# these differ only on the rightmost two bits
qc.h(qr[9])
qc.cx(qr[9], qr[8])
qc.x(qr[11])

# measure
for j in range(16):
    qc.measure(qr[j], cr[j])
```
More Quantum Software Stacks

Rigetti Computing: Forest, Quil, PyQuil

```
from math import pi

def qft3(q0, q1, q2):
    p = Program()
    p.inst(H(q2),
           CPHASE(pi/2.0, q1, q2),
           H(q1),
           CPHASE(pi/4.0, q0, q2),
           CPHASE(pi/2.0, q0, q1),
           H(q0),
           SWAP(q0, q2))
    return p
```

Opensource: ProjectQ

```
from projectq import MainEngine
from projectq.backends import CircuitDrawer
from teleport import create_bell_pair

# create a main compiler engine
drawing_engine = CircuitDrawer()
eng = MainEngine(drawing_engine)
create_bell_pair(eng)
eng.flush()
print(drawing_engine.get_latex())
```
Conclusions

Quantum computing is already here (mostly).

It is only a matter of time before a quantum computer accomplishes a task that is currently impossible on any classical computer.

Thank you!